Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies

نویسندگان

  • Stéphan T. Grilli
  • Annette R. Grilli
  • Steven P. Bastien
  • Raymond B. Sepe
  • Malcolm L. Spaulding
چکیده

We present the development and application of small buoy systems for wave energy harvesting (free-floating or slackly moored), to produce about 1 KW per unit at full scale. These systems are targeted for powering distributed marine surveillance and instrumentation networks, and should be simple in concept, easily deployable, storm resilient, and low maintenance. Our work involved design, experiments (both laboratory and field testing), and numerical simulations in realistic irregular wave climates, of two new types of buoy systems equipped with an embedded Linear Electric Generator (LEG; made of a permanent magnet, suspended to a spring, oscillating within a (two-phase) coil), whose armature motion is excited essentially by the buoy’s wave-induced heave, with some effects of roll. The first design (DC2 buoy) has a spherical float, to which a cylindrical canister is rigidly attached, which houses the LEG. A rod, attached to the LEG magnetic armature, exits through the bottom of the canister and connects to a large submerged resistance platform (which also serves as ballast). The differential motion between the float and platform heave drives the LEG oscillations. By contrast, the second design (DC3) is a self-contained (water tight) resonating multiple-spar buoy (or Starspar), in which a longer central spar houses the LEG and is surrounded by shallower, satellite spars, providing both form stability and a reduced overall average draft (necessary to achieve a proper heave resonance period). The LEG, which has a large ballast simply attached to its bottom, oscillates as a result of buoy heave through coupled resonance. Hence, LEG oscillations are maximized by matching starspar heave and LEG natural periods, and both of these to the targeted sea state peak spectral period. For spar buoys, the former is simply controlled by buoy draft. Scale model experiments are performed to calibrate numerical model parameters (essentially viscous drag coefficients), and select buoy characteristics to maximize energy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of the Linear Electromagnetic Generator for Harvesting Electrical Energy from Initial Acceleration: Design, Optimization, and Experimental Validation

One of the important requirements in projectiles is to design a power supply for fuse consumption. In this study, an optimum design for the power supply, which includes a Miniaturized Inertia Generator (MIG), was introduced. The main objective of this research was to optimize the dimensions of the MIG with the aim of increasing energy. To achieve this, the design of experiment (DOE) was carried...

متن کامل

EXPERIMENTAL INVESTIGATION OF OFFSHORE WAVE BUOY PERFORMANCE

The important characteristic of sea waves is their high energy density, which is the highest among renewable energy sources. Having up to 2700 km. of shoreline, Iran has a great potential in construction of offshore wave buoys (hereafter called OWB). In this article a OWB model with the possibility of assembling different buoy configurations is introduced. The system is exposed to regular and i...

متن کامل

Numerical Modeling of Macrosegregation during the Direct-Chill Casting of an Al alloy Billet

ABSTRACT Macrosegregation has been received high attention in the solidification modeling studies. In the present work, a numerical model was developed to predict the macrosegregation during the DC Casting of an Al-4.5wt%Cu billet. The mathematical model developed in this study consists of mass, momentum, energy and species conservation equations for a two-phase mixture of liquid and solid in a...

متن کامل

مدلسازی عددی روگذری موج از موجشکن توده سنگی با در نظر گرفتن اثر تخلخل

Wave overtopping on the breakwaters is an important issue in breakwaters’ design. Most of the previous studies focused on experimental researches and numerical modeling of irregular wave overtopping particularly on porous breakwaters has not been studied. In the present study, the verification between experimental studies and numerical modeling of irregular waves overtopping on the porous...

متن کامل

Reaching the betz limit experimentally and numerically

The Betz theory expresses that no horizontal axis wind turbine can extract more than 16/27 (59.3%) of the kinetic energy of the wind. The factor 16/27 (0.593) is known as the Betz limit. Horizontal Axis wind turbine designers try to improve the power performance to reach the Betz limit. Modern operational wind turbines achieve at peak 75% to 80% of the Betz limit. In 1919, Albert Betz used an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011